

Available online at www.sciencedirect.com

Journal of the European Ceramic Society 26 (2006) 2135-2138

www.elsevier.com/locate/jeurceramsoc

Effect of borate glass additives on the sintering behaviour and dielectric properties of BaTi₄O₉ ceramics

Jung-A. Lee, Joon-Hyung Lee*, Jeong-Joo Kim

Department of Inorganic Materials Engineering, Kyungpook National University, Daegu 702-701, Republic of Korea

Available online 2 November 2005

Abstract

Effect of B_2O_3 and BaB_2O_4 addition on microwave dielectric characteristics and sintering behaviours of $BaTi_4O_9$ ceramics were investigated. When B_2O_3 was added, bulk density of the sintered sample decreased as the content of B_2O_3 increased. B_2O_3 addition induced complex reaction with $BaTi_4O_9$ and resulted in the development of second phases such as $Ba_2Ti_9O_{20}$, $BaTi(BO_3)_2$ and TiO_2 . When BaB_2O_4 was added, however, relative density increased and the second phases of $Ba_2Ti_9O_{20}$ and $BaTi(BO_3)_2$ were produced. Dielectric characteristics of $BaTi_4O_9$ were also discussed from the viewpoint of bulk density, microstructure and second phases. © 2005 Elsevier Ltd. All rights reserved.

Keywords: Sintering; Microstructure-final; Dielectric properties; Borides; BaTi₄O₉

1. Introduction

Because of proper microwave dielectric properties of BaO–TiO₂ based systems, a number of researches have been carried out for the development and application for commercial units. In the case of BaTi₄O₉, which has superior dielectric properties for high frequency applications, very high sintering temperature around 1300 °C was required for the proper densification. For the application to low temperature co-firing technology, low-melting glasses were often used for lowering the sintering temperatures.

Various kinds of low-melting glasses have been used in $BaTi_4O_9$ ceramics.^{1,2} Even though the resultant performance of dielectrics with glass additions greatly depends on the chemical reaction between the glasses and dielectrics, densification and microstructure, no systematic studies have been conducted. In this study, $B_2O_3 - a$ well-known liquid former – was employed for a lower temperature sintering of $BaTi_4O_9$. During sintering considerable chemical reactions between B_2O_3 and $BaTi_4O_9$ were expected to occur when Ba and Ti components were dissolved out form the $BaTi_4O_9$. From this point of view, when another boron based low melting glass of BaB_2O_4 is added, the chemical reaction thought to be different because the Ba component already exists in BaB_2O_4 .

0955-2219/\$ - see front matter © 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.jeurceramsoc.2005.09.081 In the present study, two kinds of borides, B_2O_3 and BaB_2O_4 , were added for lowering the sintering temperature of $BaTi_4O_9$. The phase development behavior, densification, microstructure and dielectric characteristics were examined.

2. Experimental procedure

BaTi₄O₉ was prepared by the conventional solid-state reaction process using high purity chemicals of $BaCO_3$ (99.95%) and TiO₂ (99.9%). After ball milling and drying, the mixtures were calcined at 1100 °C for 2h. BaB₂O₄ was prepared using BaCO₃ and B₂O₃ (99.9%) through a heat treatment at 1150 °C for 1 h in a Pt crucible. Calcined BaTi₄O₉ and additives of B₂O₃ and BaB₂O₄ were dry-mixed for 24 h. The granulated powders were then pressed into pellets under the pressure of 100 MPa. The specimens were sintered in the temperature range of 900-1100 °C for 2 h in air. Powder X-ray diffraction with nickel-filtered Cu Kα radiation (Mac Science, M03XHF, Japan) was conducted on the sintered specimens to identify the phases. Microstructure observation was conducted by using a scanning electron microscope (JEOL 4500, Japan). Microwave dielectric properties were measured by the parallel plate method originally proposed by Hakki and Coleman³ utilizing TE_{01δ} resonant mode using a network analyzer (Agilent 8719ES S-parameter, USA). The quality factor $(Q \times f)$ and the temperature coefficient of resonant frequency (τ_f) were measured by the open cavity resonator method⁴ using HP8720C network analyzer.

^{*} Corresponding author. Tel.: +82 53 950 7512; fax: +82 53 950 5645. *E-mail address:* joonlee@knu.ac.kr (J.-H. Lee).

3. Results and discussion

Fig. 1 shows the X-ray diffraction patterns of the sintered samples with (a) 9 wt% B_2O_3 ; and (b) 9 wt% BaB_2O_4 as a function of sintering temperature. In the case of B_2O_3 added samples, it was mostly composed of $BaTi_4O_9$ phase with small amount of $BaTi(BO_3)_2$ and TiO_2 when it was sintered at 800 °C. However, $BaTi_4O_9$ disappeared and $Ba_2Ti_9O_{20}$ phase appeared as the main crystalline phase together with small amount of $BaTi(BO_3)_2$ at the higher sintering temperatures. In the case of the samples with BaB_2O_4 addition, $BaTi_4O_9$ was the major phase at the sintering temperatures of 800 and 900 °C. When the sintering temperature was elevated to 950 °C or above, $Ba_2Ti_9O_{20}$ became dominant and small amount of $BaTi(BO_3)_2$ coexisted.

Fig. 2 shows the volume fraction of the phases in the samples sintered at $1050 \,^{\circ}$ C for 2 h as a function of B_2O_3 and BaB_2O_4 content. These results were determined using the integrated intensity of major X-ray diffraction peaks of respective phases. When the content of B_2O_3 is increased from 1 to 9 wt%, the volume fraction of $Ba_2Ti_9O_{20}$ drastically decreased from 62.1 to 10.2%, but that of $Ba_2Ti_9O_{20}$ slowly decreased from 89.6 to 64.8% when the content of B_2O_3 around 450 °C, when $BaTi_4O_9$ grains are surrounded by B_2O_3 liquid, Ba and Ti ions will be

Fig. 1. XRD diffraction patterns of $BaTi_4O_9$ samples as a function of sintering temperature for the cases with: (a) 9 wt% B_2O_3 ; and (b) 9 wt% BaB_2O_4 (\bigcirc , $BaTi(BO_3)_2$; \bullet , TiO_2 ; \blacksquare , $Ba_2Ti_9O_{20}$; \Box , $BaTi_4O_9$).

Fig. 2. Change in the volume fraction of the phases in the samples sintered at 1050 °C for 2 h as a function of: (a) B₂O₃; and (b) BaB₂O₄ content.

concurrently dissolved out into B_2O_3 melts from $BaTi_4O_9$ grains and then forms Ba-Ti-B-O glass during the sintering process at elevated temperatures. In the Ba-Ti-B-O glass, B and Ba component act as glass network former and modifier, respectively. However, because the solubility of Ba in B_2O_3 glass is higher than that of Ti, more Ba will be dissolved out from the $BaTi_4O_9$

Fig. 3. (a) Bulk density of the $BaTi_4O_9$ samples as functions of temperature and the content of B_2O_3 and BaB_2O_4 ; (b) porosity of the samples sintered at 1050 °C for 2 h as a function of the content of B_2O_3 and BaB_2O_4 .

Fig. 4. Microstructures of $BaTi_4O_9$ samples sintered at 1050 °C for 2 h with addition of: (a) 9 wt% B_2O_3 ; and (b) 9 wt% BaB_2O_4 .

which will eventually results in the formation of TiO_2 and $Barich B_2O_3$ glasses.^{5,6} At the same time, another reaction between $BaTi_4O_9$ grains and Ba-rich B_2O_3 glass will be proceeded, that which leads to the formation of the $BaTi(BO_3)_2$ and $Ba_2Ti_9O_{20}$ phases. On the other hand, when BaB_2O_4 is added, less Ba will be dissolved out from $BaTi_4O_9$ comparing to the case of B_2O_3 addition because BaB_2O_4 can be considered as a material that Ba component already dissolved in B_2O_3 . In this case, no TiO_2 will be produced but $BaTi(BO_3)_2$ and $Ba_2Ti_9O_{20}$ will be produced.

Fig. 3(a) shows bulk density of samples as functions of sintering temperature and the content of B_2O_3 and BaB_2O_4 . The bulk density increased as the sintering temperature increased. The overall tendency showed that the density of the samples with BaB_2O_4 addition was higher than that of B_2O_3 addition. Comparing the porosity of the samples sintered at 1050 °C for 2 h as a function of borides content, porosity increased with the content of B_2O_3 in contrast to BaB_2O_4 addition. In addition to the pores, phase development also influenced on the density of the samples. Since more B_2O_3 addition leads to more production of $BaTi(BO_3)_2$ ($\rho = 4.2$ g/cm³) and TiO₂ ($\rho = 4.2$ g/cm³) phases, which have lower density than $Ba_2Ti_9O_{20}$ ($\rho = 4.6$ g/cm³) phase, the decrease in bulk density is occurred as shown in Fig. 3(a).

Microstructures of sintered samples with 9 wt% of B_2O_3 and BaB_2O_4 are presented in Fig. 4. When 9 wt% of B_2O_3 is added, large pores were observed. On the basis of energy dispersive

Fig. 5. Schematic diagram of intergranular pore development process: (a) before; and (b) after sintering when a liquid-forming additive of B_2O_3 is added.

spectroscopy (EDS) and X-ray diffraction analysis, the phase of $Ba_2Ti_9O_{20}$, $BaTi(BO_3)_2$ and TiO_2 were distinguishable in the microstructure. The shape of needle like and plate like grains of $BaTi(BO_3)_2$ and $Ba_2Ti_9O_{20}$ are well agreed with the previous observation.^{5,7}

Fig. 5 shows the schematic diagram of intergranular pore development process which corresponds to the case of the sample with 9 wt% of B_2O_3 as its microstructure is presented in Fig. 4(a). In a green pellet shown in Fig. 5(a), B₂O₃ and BaTi₄O₉ particles are homogeneously distributed. During sintering over the eutectic temperature of B_2O_3 , the melts of B_2O_3 will soak into the solid skeleton of BaTi₄O₉ grains leaving behind voids at the place where the B_2O_3 existed. Because of the reaction between B2O3 and BaTi4O9, most of the melts of B2O3 disappeared and the pore elimination through the liquid flow induced pore filling⁸ is not available, which resulted in the generation of large pores observed in Fig. 4(a). From this point of view, it can be considered that the densification and reaction occur simultaneously during sintering process when both B₂O₃ and BaB₂O₄ are added. Since B2O3 addition induces complicated and much more chemical reactions than BaB₂O₄ addition, densification might be delayed and densification starts at higher temperature

Fig. 6. (a) Dielectric constant; and (b) temperature coefficient of resonant frequency of samples sintered at 1050 °C for 2 h as a function of B_2O_3 and BaB_2O_4 content.

when B_2O_3 is added as revealed in Fig. 3(a). Note that a great increase in densification occurred at 1000 and 1050 °C when BaB_2O_4 and B_2O_3 were added, respectively.

The dielectric constant of the samples sintered at 1050 °C for 2h as a function of B₂O₃ and BaB₂O₄ is presented in Fig. 6(a). For the B₂O₃ added samples, dielectric constant slowly increased from 37.9 to 38.4 as the content increased from 1 to 5 wt%. Further addition of B₂O₃ over 5 wt% resulted in a great decrease in dielectric constant. The increase in dielectric constant is thought to be originated from the formation of TiO_2 phase, which has high dielectric constant around 105. The great decrease in dielectric constant over 5 wt% of B₂O₃ is believed to be caused by poor densification since B₂O₃ produces many large pores. As the content of BaB_2O_4 is increased from 1 to 9 wt%, dielectric constant revealed almost constant value around 37.5 but showed an increasing tendency with BaB₂O₄ content. Even though the formation of the $BaTi(BO_3)_2$ was expected to reduce the dielectric constant due to its low dielectric constant around 11.5, the dielectric constant was not decreased. The negative effect of BaTi(BO₃)₂ phase on dielectric constant seems compensated by the accelerated densification effect of BaB₂O₄. The quality factor $(Q \times f)$ of the samples decreased with increasing

the content of B₂O₃ and BaB₂O₄. When the content of B₂O₃ is increased from 1 to 9 wt%, even though the figure is not presented, the quality factor decreased from 36,350 to 24,140, while the quality factor decreased from 38,860 to 33,370 as the content of BaB₂O₄ increased from 1 to 9 wt%. Fig. 6(b) shows the temperature coefficient of resonant frequency (τ_f) of the samples sintered at 1050 °C for 2 h as a function of borides content. τ_f increased with increasing of B₂O₃ content. Since B₂O₃ addition led to the formation of TiO₂, it is thought that the TiO₂ second phase is attributed to the increase in τ_f because TiO₂ has high positive τ_f value. When BaB₂O₄ is added, the τ_f is nearly independent of the amount of BaB₂O₄.

4. Conclusion

The effect of low temperature glasses of borides addition on microwave dielectric characteristics and sintering behavior of BaTi₄O₉ ceramics was examined. When B₂O₃ was added, active dissolution of Ba and Ti into B₂O₃ liquid from BaTi₄O₉ led to the formation of many second phases during sintering process. Moreover, B₂O₃ produced many large pores in the microstructure. These results made the dielectric characteristics of BaTi₄O₉ deteriorated. When BaB₂O₄ was added, chemical reaction between the glass and BaTi₄O₉ seems to be suppressed and densification was improved, which results in superior dielectric characteristics than the case of B₂O₃ addition.

Acknowledgement

This work was supported by the Korea Research Foundation Grant (KRF-2004-002-D00174).

References

- Lu, S. G., Kwok, K. W., Chan, H. L. W. and Choy, C. L., Structural and electrical properties of BaTi₄O₉ microwave ceramics incorporated with glass phase. *Mater. Sci. Eng. B*, 2003, **99**, 491–494.
- Kim, D. W., Lee, D. G. and Hong, K. S., Low-temperature firing and microwave dielectric properties of BaTi₄O₉ with Zn–B–O glass system. *Mater. Res. Bull.*, 2001, 36, 585–595.
- Hakki, B.W. and Coleman, P.D., A dielectric resonator method of measuring inductive capacities in the millimeter range, *IRE. Trans. Microwave Theory Tech.*, 1960, MTT-8, 402–410.
- Kobayashi, Y. and Tanaka, S., *Measurement of Complex Dielectric Constant by Columnar Dielectric Resonator*. Technical Report CPM 72033, Institute of Electron & Communication Engineers of Japan, 1972.
- Kuromitsu, Y., Wang, S. F., Yoshikawa, S. and Newnham, R. E., Evolution of interfacial microstructure between barium titanate and binary glasses. J. Am. Ceram. Soc., 1994, 77, 852–856.
- Hirata, A. and Yamaguchi, T., Interfacial reaction of BaTiO₃ ceramics with PbO–B₂O₃ glasses. J. Am. Ceram. Soc., 1997, 80, 79–84.
- Wang, S. W., Chung, C. C. and Wang, C. H., Effects of B₂O₃ on the phase stability of Ba₂Ti₉O₂₀ microwave ceramic. *J. Am. Ceram. Soc.*, 2002, 85, 1619–1621.
- Kwon, O. J. and Yoon, D. N., Closure of isolated pores in liquid phase sintering of W–Ni. Int. J. Powder Metall. Powder Tech., 1981, 17, 127–133.